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ABSTRACT
ATL+ is a variant of alternating-time temporal logic that
does not have the expressive power of full ATL∗, but still al-
lows for expressing some natural properties of agents. It has
been believed that verification with ATL+ is ΔP

3 -complete
for both memoryless agents and players who can memorize
the whole history of the game. In this paper, we show that
the latter result is not correct. That is, we prove that model
checking ATL+ for agents that use strategies with memory
is in fact PSPACE-complete. On a more optimistic note,
we show that fairness constraints can be added to ATL+

without further increasing the complexity of model check-
ing, which makes ATL+ an attractive alternative to the full
language of ATL∗.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic

General Terms
Theory, Verification

Keywords
Strategic logic, model checking, complexity

1. INTRODUCTION
The alternating-time temporal logic ATL∗ and its less

expressive version ATL [2] have been studied extensively in
previous years. Much research was focused on the way such
logics can be used for the verification of multi-agent sys-
tems. Consequently, the computational complexity of model
checking turned out essential to evaluate and compare the
practical usability of different variants of strategic logics. It
is known that the model checking problem of full ATL∗ is
2EXPTIME-complete, and only P-complete for ATL, if
perfect recall strategies are used [2], i.e., if players can mem-
orize the whole history of the game. Hence, the latter logic
is more attractive computationally. However, there is also
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a price to pay in terms of expressiveness. The simple prop-
erty that an agent can make p true infinitely often can, for
instance, be expressed in ATL∗ but not in ATL.

A tradeoff is offered by ATL+, a variant of the alternating-
time temporal logic that does not have the expressive power
of full ATL∗, but still allows for expressing some natural
properties of agents. For example, we can use the formula
〈〈robot〉〉(�cleanRoom ∧ �packageDelivered) to demand that
the robot can clean the room and deliver the package, with-
out specifying in which order the tasks will be accomplished.

Verification with ATL+ has been believed to be ΔP
3 -

complete for both memoryless and perfect recall strategies [15].
In this paper, we show that the latter result is wrong. That
is, we prove that model checking ATL+ for agents that use
strategies with full memory is in fact PSPACE-complete.
Since the ΔP

3 -completeness for the memoryless semantics
still holds, we get that memory makes verification harder
already for ATL+, and not just for ATL∗ as it was be-
lieved. We also show that fairness conditions can be added
to ATL+ without further increasing the complexity.

The rest of this paper is structured as follows. In Section
2 we introduce the relevant logics and their models, and
discuss the variant ATL+ in more detail. In Section 3 we
correct the existing“results”on the model checking complex-
ity of ATL+ for agents with perfect information and perfect
recall. In Section 4 we study EATL+ (ATL+ augmented
with the temporal operator �� (“infinitely often”)). Finally,
we argue why we consider the results significant and present
some conclusions in Sections 5 and 6, respectively.

2. ATL+ AND THE MATTER OF RECALL
The alternating-time temporal logic ATL∗ [2] is a tem-

poral logic that incorporates some basic game-theoretical
notions. Essentially, ATL∗ generalizes the branching time
logic CTL∗ [5] by replacing the path quantifiers E, A with co-
operation modalities 〈〈A〉〉. Informally, 〈〈A〉〉γ expresses that
the group of agents A has a collective strategy to enforce
temporal property γ. ATL∗ formulae include temporal op-
erators: �(“in the next state”) and U (“until”). Additional
operators � (“now or sometime in the future”) and � (“al-
ways from now on”) can be defined as �γ ≡ �U γ and
�γ ≡ ¬�¬γ. It should be noted that the path quantifiers
A, E of CTL∗ can be expressed in ATL∗ with 〈〈∅〉〉, 〈〈Agt〉〉
respectively.

2.1 Syntax and Variants
In the rest of the paper we assume that Π is a nonempty

set of proposition symbols and Agt a nonempty and finite
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Figure 1: Two robots and a carriage: a schematic
view

set of agents. Alternating-time temporal logic comes in sev-
eral variants, of which ATL∗ is the broadest. Formally, the
language of ATL∗ is given by formulae ϕ generated by the
grammar below, where A ⊆ Agt is a set of agents, and p ∈ Π
is an atomic proposition:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
γ ::= ϕ | ¬γ | γ ∧ γ | �γ | γ U γ.

Formulae ϕ are called state formulae, and γ path formulae
of ATL∗.

The best known variant of the alternating time tempo-
ral logics is ATL (sometimes called “ATL without star” or
“vanilla” ATL) in which every occurrence of a cooperation
modality is immediately followed by exactly one temporal
operator. In this paper, however, we study the model check-
ing problem for ATL+, a variant that sits between ATL∗

and ATL. The language of ATL+ includes only formulae
where each temporal operator is followed by a state for-
mula, and allows cooperation modalities to be followed by a
Boolean combination of path subformulae; i.e. path formu-
lae are defined by γ ::= ¬γ | γ ∧ γ | �ϕ | ϕU ϕ.

Example 1. The ATL formula 〈〈jamesbond〉〉�win says
that James Bond can eventually win, no matter how the
other agents act. On the other hand, 〈〈jamesbond〉〉�(assigned
→ �accomplished) is an ATL∗ formula which clearly be-
longs to neither ATL nor ATL+ and deems agent 007 to be
able to accomplish all his future missions. Finally,
〈〈jamesbond〉〉(�¬crash ∧ �land) (James Bond can prevent
the space ship from crashing and make it eventually land) is
a formula of ATL+ but not of ATL.

2.2 Semantics
The semantics of ATL∗ is defined over a variant of transi-

tion systems where transitions are labeled with combinations
of actions, one per agent. Formally, a concurrent game struc-
ture (CGS) is a tuple M = 〈Agt, St, Π, π, Act, d, o〉 which
includes a nonempty finite set of all agents Agt = {1, . . . , k},
a nonempty set of states St, a set of atomic propositions Π
and their valuation π : Π → 2St, and a nonempty finite set of
(atomic) actions Act. Function d : Agt × St → 2Act defines
nonempty sets of actions available to agents at each state,
and o is a (deterministic) transition function that assigns the
outcome state q′ = o(q, α1, . . . , αk) to state q and a tuple of
actions 〈α1, . . . , αk〉 for αi ∈ d(i, q) and 1 ≤ i ≤ k, that
can be executed by Agt in q. Thus, we assume that all the
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Figure 2: Two robots and a carriage: concurrent
game structure M1 that models the scenario

agents execute their actions synchronously; the combination
of the actions, together with the current state, determines
the next transition of the system.

A path λ = q0q1q2 . . . is an infinite sequence of states such
that there is a transition between each qi, qi+1. We use λ[i]
to denote the ith position on path λ (starting from i = 0)
and λ[i,∞] to denote the subpath of λ starting from i.

Example 2 (Robots and Carriage). Consider the
scenario depicted in Figures 1 and 2. Two robots push a
carriage from opposite sides. As a result, the carriage can
move clockwise or anticlockwise, or it can remain in the
same place. We assume that each robot can either push
(action push) or refrain from pushing (action wait). More-
over, they both use the same force when pushing. Thus, if
the robots push simultaneously or wait simultaneously, the
carriage does not move. When only one of the robots is
pushing, the carriage moves accordingly. Finally, when the
carriage is in position 0, robot 1 may try to retire it to a
halting position.

To make our model of the domain discrete, we identify 4
different positions of the carriage, and associate them with
states q0, q1, q2, and qh. We label the states with proposi-
tions pos0, pos1, pos2, halt, respectively, to allow for referring
to the current position of the carriage in the object language.

A strategy of agent a is a plan that specifies what a is going
to do in each situation. It makes sense, from a conceptual
and computational point of view, to distinguish between two
types of strategies: an agent may base his decision on the
current state or on the whole history of events that have
happened. Also, the agent may have complete or incomplete
knowledge about the current global state of the system. To
distinguish between those cases, we use the taxonomy and
notation introduced in [15]: ATLxy where x = i (resp. I )
stands for imperfect (resp. perfect) information and y = r
(resp. R) for imperfect (resp. perfect) recall. Here we are
mainly interested in the IR-setting.

A perfect information perfect recall strategy (IR-strategy)
for agent a is a function sa : St+ → Act such that
sa(q0q1 . . . qn) ∈ da(qn) for any finite history q0q1 . . . qn. A
perfect information memoryless strategy (Ir-strategy) is a
function sa : St → Act such that sa(q) ∈ da(q) for each
q. We do not consider the model checking problem for im-
perfect information games in this paper, so we will omit
definitions of ir - and iR-strategies here.

A collective strategy for a group of agents A = {a1, . . . , ar} ⊆
Agt is simply a tuple of individual strategies sA = 〈sa1 , . . . , sar 〉.
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By sA|a, we denote agent a’s part sa of the collective strat-
egy sA, a ∈ A. Function out(q, sA) returns the set of all
paths that may occur when agents A execute strategy sA

from state q onward. For an IR-strategy we have:

out(q, sA) = {λ = q0q1q2 . . . | q0 = q and for each i =
1, 2, . . . there exists a tuple of agents’ decisions 〈αi−1

a1 , . . . ,

αi−1
ak

〉 such that αi−1
a ∈ da(qi−1) for every a ∈ Agt,

and αi−1
a = sA|a(q0q1 . . . qi−1) for every a ∈ A, and

o(qi−1, α
i−1
a1 , . . . , αi−1

ak
) = qi}.

The definition for memoryless strategies is analogous.
Let M be a CGS, q a state, and λ a path in M . The

semantics of ATL∗
xy is defined as follows [2, 15]:

M, q |= p iff q ∈ π(p), for p ∈ Π;

M, q |= ¬ϕ iff M, q �|= ϕ;

M, q |= ϕ1 ∧ ϕ2 iff M, q |= ϕ1 and M, q |= ϕ2;

M, q |= 〈〈A〉〉γ iff there is an xy-strategy sA for A such
that for each λ ∈ out(sA, q) we have M, λ |= γ.

M, λ |= ϕ iff M, λ[0] |= ϕ;

M, λ |= ¬γ iff M, λ �|= γ;

M, λ |= γ1 ∧ γ2 iff M, λ |= γ1 and M, λ |= γ2;

M, λ |= �γ iff M, λ[1,∞] |= γ; and

M, λ |= γ1 U γ2 iff there is an i ∈ N0 such that M, λ[i,∞] |=
γ2 and M, λ[j,∞] |= γ1 for all 0 ≤ j < i.

Example 3 (Robots and Carriage, ctd.). Since the
outcome of each robot’s action depends on the current action
of the other robot, no agent can make sure that the carriage
moves to any particular position. So, we have for example
that M1, q0 |= ¬〈〈1〉〉�pos1. On the other hand, the robots
can cooperate to move the carriage. For instance, it holds
that M1, q0 |= 〈〈1, 2〉〉�pos1 (example strategy: robot 1 always
pushes and robot 2 always waits).

In fact, the same strategy can be used to express that
the robots can make the carriage visit every “active” posi-
tion, which is captured by the following ATL+ satisfaction:
M1, q0 |= 〈〈1, 2〉〉(�pos0 ∧ �pos1 ∧ �pos2). Note that all the
above properties hold for both memoryless agents and agents
with perfect recall.

2.3 Importance of ATL+. Known Results
It is well known that the memoryless and perfect recall se-

mantics of “vanilla”ATL coincide [2, 15]. That is, M, q |= ϕ
in ATLIR iff it holds in ATLIr. The same is not true for
ATL∗, and in fact, already for ATL+. For example, formula
〈〈1, 2〉〉(�pos1 ∧ �halt) holds in M1, q0 in the set of perfect
recall strategies but not in the set of memoryless strategies.
In consequence, ATL+ can be seen as a minimal well-known
variant of the alternating-time logic that discerns the mem-
oryless and perfect recall semantics.

In conceptual terms, we can use ATL+ to specify a set
of goals without saying in which order they should be accom-
plished, like in the formula 〈〈robot〉〉(�cleanRoom ∧
�packageDelivered). Moreover, ATL+ allows for reason-
ing about what can be achieved under certain assumptions
about the agents’ behavior. This kind of properties has been
especially studied in deontic logic and normative systems
(e.g., [12, 13, 17]), but also in reasoning about plausible be-
havior of agents [3]. For instance, consider a class of systems

where a state is labeled with proposition Va iff agent a has vi-
olated a social norm with his last action. Then, property “a
can enforce property γ while complying with social norms”
can be captured by the ATL+ formula 〈〈a〉〉((�¬Va)∧γ). A
similar property, “b can enforce γ provided that a complies
with norms” can be expressed with 〈〈b〉〉((�¬Va) → γ).

ATL+ is more expressive than ATL, which follows from
the fact that the “weak until” operator is expressible in
ATL+ (as ϕW ψ ≡ ϕU ψ ∨ �(¬ψ)), but not in the orig-
inal version of ATL [10]. Still, many formulae of ATL+

have their equivalent counterparts in ATL. For instance,
〈〈jamesbond〉〉(�¬crash ∧ �land) can be rephrased as
〈〈jamesbond〉〉(¬crash)U (land ∧ 〈〈jamesbond〉〉�¬crash).

In particular, we have that ATL+
IR formulae can be equiv-

alently translated into ATLIR with the “weak until” opera-
tor [8]. We observe that in some cases the translation re-
sults in an exponential blowup of the length of the formula.
Thus, ATL+

IR has the same expressive power as “vanilla”
ATLIR with “weak until” – but it allows for exponentially
more succinct and intuitive specifications of some properties
(this follows from the results in [16]).

Regarding the complexity of verification for strategic log-
ics, the following patterns can be observed (albeit not with-
out exceptions): (i) Model checking more expressive and/or
succinct logics is usually harder than the less expressive
and/or succinct ones; (ii) Model checking imperfect infor-
mation agents is usually harder than perfect information
ones; (iii)Model checking agents with perfect recall is usu-
ally harder than memoryless agents.

Indeed, for the memoryless semantics (Ir), model check-
ing of ATL can be done in linear time wrt the number of
transitions in the model and the length of the formula [2],1

while model checking of ATL+ is ΔP
3 -complete,2 and model

checking of ATL∗ is PSPACE-complete. Moreover, for the
perfect recall semantics (IR), model checking of ATL is still
linear (it is the same logic after all) while verification of
ATL∗ is complete in double exponential time [2].

What about model checking ATL+
IR? In [15], it is claimed

to be ΔP
3 -complete, so apparently no price is paid for assum-

ing agents’ memory in this case. Unfortunately, the claim
is wrong. We show in Section 3 that the problem becomes
PSPACE-complete in the IR-setting. Note that the results
in [10] on the verification of ATL+

IR in various non-standard
settings are also incorrect since they crucially depend on the
claim from [15]; we will correct them in Section 3.3.

3. MODEL CHECKING ATL+
IR

In an excellent study [15], Schobbens claims that model
checking ATL+ is ΔP

3 -complete wrt to the number of tran-
sitions in the model and the length of the formula, for both
perfect recall and memoryless semantics. For memoryless
agents, the upper bound can be shown by the following al-
gorithm. Given a formula 〈〈A〉〉γ with no nested coopera-
tion modalities, we can guess a memoryless strategy of A,
“trim” the model accordingly, and model-check the CTL+

1It is important to add that the “weak until” operator W
does not increase the complexity [10].
2ΔP

3 = PΣP
2 is the class of problems that can be solved

by a deterministic Turing machine that can make adaptive
queries to an oracle of type ΣP

2 = NPNP. That is, the ora-
cle is a nondeterministic TM that can query another oracle
(a nondeterministic TM itself). All the three machines are
required to run in polynomial time.
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Figure 3: Construction of the concurrent game
structure for QSAT: value choice section

formula Aγ in the resulting model. Note that a memory-
less strategy can be guessed in polynomially many steps,
and the trimming process requires only polynomially many
steps too. For nested cooperation modalities, we repeat the
procedure recursively (bottom-up). Since model checking
of the CTL+ formula Aγ can be done in nondeterministic
polynomial time [11], we get that the overall procedure runs

in time
(
ΔP

2

)NP
= ΔP

3 [15].
For agents with perfect recall, a similar argument seems

correct. Every formula of ATL+
IR can be translated to an

equivalent formula of ATLIR with weak until [8], and for
ATL (also with weak until) it does not make a difference
whether the perfect recall or memoryless semantics is used,
so memoryless strategies can be used instead. Hence, it
is enough to guess a memoryless strategy, trim the model
etc. Unfortunately, this line of reasoning is wrong because
the result of the translation (the ATLIR formula) may in-
clude exponentially many cooperation modalities (instead of
one in the original ATL+

IR formula). For example, formula
〈〈A〉〉(�p ∧ �q) is translated to 〈〈A〉〉�(

(p ∧ 〈〈A〉〉�q) ∨ (q ∧
〈〈A〉〉�p)

)
; for a longer list of achievement goals (�pi) every

permutation must be explicitly enumerated. Thus, we may
need to guess exponentially many polynomial-size strategies,
which clearly cannot be done in polynomial time.

There seems to be an intuitive way of recovering from the
problem. Note that, in an actual execution, only a poly-
nomial number of these strategies will be used. So, we can
try to first guess a sequence of goals (in the right order) for
whom strategies will be needed, then the strategies them-
selves, fix those strategies in the model (cloning the model
into as many copies as we need) and check the corresponding
CTL+ formula in it. Unfortunately, this is also wrong: for
different execution paths, we may need different ordering of
the goals (and hence strategies). And we have to consider
exponentially many paths in the worst case.

So, what is the complexity of model checking ATL+
IR in

the end? The problem turns out to be harder than ΔP
3 ,

namely PSPACE-complete.

3.1 Lower Bound
We prove the PSPACE-hardness by a reduction of Quan-

tified Boolean Satisfiability (QSAT), a canonical PSPACE-
complete problem.

Definition 1 (QSAT [14]). Input: A Boolean for-
mula Φ in negation normal form (i.e., negations occur only
at literals) with n propositional variables x1, . . . , xn.
Output: True if ∃x1∀x2 . . . Qnxn Φ holds, false otherwise
(where Qn = ∀ if n is even, and Qn = ∃ if n is odd).

qΦ
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· · ·
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qlm

L

R

L
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Figure 4: CGS for QSAT: formula structure section
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Figure 5: CGS for QSAT: sections of literals

Given an instance of QSAT we construct a turn-based3

concurrent game structure M with two players: the verifier
v and the refuter r. The structure consists of the following
sections:

• Value choice section: a sequence of states qi, one per
variable xi, where the values of xi’s will be “declared”,
see Figure 3. States qi with odd i are controlled by
v, states with even i are controlled by r. The owner
of a state can choose between two possible valuations
(�,⊥). Choosing � leads to a state where the propo-
sition xi holds; choosing ⊥ leads to a state labeled by
the proposition notxi.

• Formula structure section: corresponds to the parse
tree of Φ, see Figure 4. For every subformula Ψ of Φ,
there is a state qΨ with two choices: L leading to state
qL(Ψ) and R leading to qR(Ψ), where L(Ψ) is the left
hand side subformula of Ψ and R(Ψ) is the right hand
side subformula of Ψ. The verifier controls qΨ if the
outermost connective in Ψ is a disjunction; the refuter
controls the state if it is a conjunction. Note that each
leaf state in the tree is named according to a literal li
from Φ, that is, either with a variable xi or its negation
¬xi.

• Sections of literals: for every literal l in Φ, we have a
single state ql, controlled by the owner of the Boolean
variable xi in l. Like in the value choice section, the
agent chooses a value (� or ⊥) for the variable (not for
the literal!) which leads to a new state labeled with the
proposition xi (for action �) or notxi (for ⊥). Finally,
the system proceeds to the winning state q
 (labeled
with the proposition yes) if the valuation of xi makes
the literal l true, and to the losing state q⊥ otherwise
– see Figure 5 for details.

3A model is turn-based if each state has a single agent that
controls the subsequent transition, and the other agents have
no real choice there (which can be modeled by assuming
dq(a) = {wait} for every agent a except the “owner” of q).
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Note that the value of variable xi can be declared twice
during an execution of the model. The following “consis-
tency” macro: Consi ≡ �¬xi ∨ �¬notxi expresses that the
value of xi cannot be declared both � and ⊥ during a single
execution. Now, we have that:

Lemma 1. ∃x1∀x2 . . . Qnxn Φ iff

M, q1 |=IR 〈〈v〉〉(
∧

i∈Odd

Consi ∧ (
∧

i∈Even

Consi → �yes)
)
.

Proof sketch. The ATL+ formula specifies that v can
consistently assign values to “his” variables, so that if r con-
sistently assigns values to “his” variables (in any way), for-
mula Φ will always evaluate to �, which is exactly the mean-
ing of QSAT. The way a player assigns a value to variable
xi may depend on what has been assigned to x1, . . . , xi−1.
Note that this is the reason why perfect recall is necessary
to obtain the reduction.

We observe that the construction results in a model with
O(|Φ|) states and transitions, and it can be constructed in
O(|Φ|) steps, so we get the following result where the size of
a CGS is defined as the number of its transitions (m) plus
the number of states (n). Note, that O(n + m) = O(m).

Theorem 2. Model checking ATL+ with the perfect re-
call semantics is PSPACE-hard with respect to the size of
the model and the length of the formula. It is PSPACE-
hard even for turn-based models with two agents and “flat”
ATL+ formulae, i.e., ones that include no nested coopera-
tion modalities.

3.2 Upper Bound
In this section we show that model checking ATL+

IR can
be done in polynomial space. Our proof has been inspired
by the construction in [11], proposed for CTL+. We begin
by introducing some notation.

We say that sA is a strategy for (M, q, γ) if for all λ ∈
outM (q, sA) it holds that M, λ |= γ. An ATL+-path formula
γ is called atomic if it has the form �ϕ1 or ϕ1 U ϕ2 where
ϕ1, ϕ2 ∈ ATL+. For ϕ ∈ ATL+ we denote the set of all
atomic path subformulae of ϕ by APF(ϕ). And, as before,
we call an ATL+-path formula γ flat if it does not contain
any more cooperation modalities.

Now we can define the notion of witness position which
is a specific position on a path that “makes” a path formula
true or false.

Definition 2 (Witness position). Let γ be a flat atomic
path formula, and let λ be a path. The witness position
witpos(λ, γ) of γ wrt λ is defined as follows:
(1) if γ = �ϕ then witpos(λ, γ) = 1;
(2) if γ = ϕ1 U ϕ2 and

• λ |= γ then witpos(λ, γ) = min{i ≥ 0 | λ[i] |= ϕ2}
• λ �|= γ and λ |= �ϕ2 then witpos(λ, γ) = min{i ≥ 0 |

λ[i] |= ¬ϕ1}
• λ �|= γ and λ �|= �ϕ2 then witpos(λ, γ) = −1.

Moreover, for a flat (not necessarily atomic) ATL+ path
formula γ, we define the set of witness positions of γ wrt λ
as wit(λ, γ) = (

⋃
γ′∈APF(γ){witpos(λ, γ′)}) ∩ N0.

For instance, if formula �¬p is true on λ then witpos(λ, �¬p) =
−1 since the formula is an abbreviation for ¬(�U p), and for

this formula we have that witpos(λ, �¬p) = −1 and conse-
quently, wit(λ, �¬p) = ∅. In the following we assume that
γ is flat.

In the next lemma we show that if there is a strategy that
enforces a (flat) path formula γ then the witnesses of all
atomic subformulae of γ can be found in a bounded initial
fragment of each resulting path. Firstly, we introduce the
notion of a segment which can be seen as a “minimal loop”.

Definition 3 (Segment). A segment of path λ is a
tuple (i, j) ∈ N2

0 with i < j such that λ[i] = λ[j] and there
are no indices k, k′ with i ≤ k < k′ ≤ j such that λ[k] = λ[k′]
except for k = i, k′ = j. The set of segments of λ is denoted
by seg(λ).

Lemma 3. Let M, q |= 〈〈A〉〉γ. Then, there is a strategy
sA for (M, q, γ) such that for all paths λ ∈ outM (q, sA) the
following property holds: For every segment (i, j) ∈ seg(λ)
with j ≤ maxwit(λ, γ) there is a witness position k ∈ wit(λ, γ)
with i ≤ k ≤ j.

Proof sketch. Suppose such a strategy does not ex-
ist; then, for any strategy sA for (M, q, γ), there is a path
λ ∈ out(q, sA) and a segment (i, j) ∈ seg(λ) with j ≤
maxwit(λ, γ) s.t. there is no k ∈ wit(λ, γ) with i ≤ k ≤ j.

We now define s′A as the strategy that is equal to sA ex-
cept that it cuts out the “idle” segment (i, j) from λ, i.e.,
s′A(λ[0, i]h) := sA(λ[0, j]h) for all h ∈ St+, and s′A(h) :=
sA(h) otherwise. Note that out(q, s′A) = out(q, sA) except
for paths that begin with λ[0, j]: these are replaced with
paths that achieve the remaining witness positions in j − i
less steps. By following this procedure recursively, we ob-
tain a strategy that reaches a witness in every segment of
each λ up to maxwit(λ, γ).

Given, for instance, an ATL+ formula 〈〈A〉〉(�p∧�r) the
previous lemma says that if A has any winning strategy than
it also has one such that only the first two segments on
each path in the outcome are important to witness the truth
of �p ∧ �r. In the next definition we make this intuition
formal and define the truth of ATL+ path formulae on finite
sequences of states.

Definition 4 (|=k
). Let M be a CGS, λ be path in

M , and k ∈ N. The semantics |=k is defined as follows:

M, λ |=k ¬γ iff M, λ �|=k γ;

M, λ |=k γ ∧ δ iff M, λ |=k γ and M, λ |=k δ;

M, λ |=k �ϕ iff M, λ[1] |= ϕ and k > 1; and

M, λ |=k ϕU ψ iff there is an i < k such that M, λ[i] |= ψ
and M, λ[j] |= ϕ for all 0 ≤ j < i;

Essentially, we consider the first k states on a path in order
to see whether a formula is made true on it.

Definition 5 (k-witness strategy). We say that a
strategy sA is a k-witness strategy for (M, q, γ) if for all
λ ∈ out(q, sA) we have that M, λ |=k γ.

The following theorem is essential for our model checking
algorithm. The result ensures that the existence of a winning
strategy can be decided by only guessing the first k-steps of
a k-witness strategy.

Theorem 4. M, q |= 〈〈A〉〉γ iff there is a |StM |·|APF(γ)|-
witness strategy for (M, q, γ).
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Proof sketch. ”⇒:” Let sA be a strategy for (M, q, γ).
By Lemma 3 and the fact that |wit(λ, γ)| ≤ |APF(γ)| for
any path λ there is a strategy s′A for (M, q, γ) such that
maxwit(λ, γ) ≤ |StM | · |APF(γ)| for all λ ∈ out(q, sA).
This shows that s′A is a |StM | · |APF(γ)|-witness strategy
for (M, q, γ).

“⇐”: Suppose there is a k := |StM | · |APF(γ)| witness
strategy then there also is a k-witness strategy such that on
no path in the outcome there is an “idle” segment (i, j) (a
segment containing no witness) with j ≤ v, where v is the
maximal witness on the path smaller than k (cf. Lemma 3).
We call such strategies efficient. Now suppose there is an
efficient k-witness strategy sA but no strategy for (M, q, γ);
i.e. for all efficient k-witness strategies there is a path λ ∈
out(q, sA) such that M, λ �|= γ. Note, that this can only
happen if there is some γ′ ∈ APF(γ) with (minimal) w :=
witpos(λ, γ′) ≥ k that cannot be prevented by A. Due to
efficiency all subformulae that have a witness ≤ k actually
have a witness ≤ k − |StM |. But then, the opponents can
ensure that there is some other path λ′ ∈ out(q, sA) on which
γ′ is witnessed within the first k steps on λ′ and after all the
other formulae with a witness ≤ v (i.e. within steps v and
k). This contradicts that sA is a k-witness strategy.

In the next theorem we construct an alternating Turing
machine that solves the model checking problem.

Theorem 5. Let ϕ ≡ 〈〈A〉〉γ be a flat ATL+
IR formula,

M a CGS, and q a state. Then, there is a polynomial-time
alternating Turing machine (wrt the size of the model and
length of the formula) that returns “yes” if M, q |= ϕ and
“no” otherwise.

Proof sketch. The idea behind the algorithm can be
summarized as follows: coalition A acts as a collective “ver-
ifier”, and the rest of the agents plays the role of a collective
“refuter” of the formula. We first transform γ to its nega-
tion normal form.4 Next, we allow the verifier to nondeter-
ministically construct A’s strategy step by step for the first
|StM | · |APF(γ)| rounds (|Agt| steps each), while the re-
futer guesses the most damaging responses of Agt \A. This
gives us a finite path h (of length |StM | · |APF(γ)|) that
is the outcome of the best strategy of A against the worst
course of events. Then, we implement the game-theoretical
semantics of propositional logic [9] as a game between the
verifier (who controls disjunction) and the refuter (control-
ling conjunction). The game reduces the truth value of γ
to a (possibly negated) atomic subformula γ0. Finally, we

check if h |=|StM |·|APF(γ)| γ0, and return the answer. The
correctness of the construction follows from Theorem 4.

For non-flat formulae we proceed as usual (cf. [2]).

Corollary 6. Model checking ATL+ over CGS’s with
the perfect recall semantics is PSPACE-complete wrt the
size of the model and the length of the formula. It is PSPACE-
complete even for turn-based models with two agents and
“flat” ATL+ formulae.

3.3 Correcting Related Results
Concurrent game structures specify transitions through a

function that defines state transformations for every combi-
nation of simultaneous actions from Agt. In other words,

4I.e., so that negation occurs only in front of atomic path
subformulae.

transitions are given through an array that defines the out-
come state for every combination of a state with k actions
available at that state. This is clearly a disadvantage from
the computational point of view, since the array is in general
exponential with respect to the number of agents: more pre-
cisely, we have that m = O(ndk), where m is the number of
(labeled) transitions in the model, n is the number of states,
d is the maximal number of choices per state, and k is the
number of agents.

Two variants of game structures overcome this problem.
In alternating transition systems (ATS), used as models in
the initial semantics of ATL [1], agents’ choices are state
transformations themselves rather than abstract labels. In
implicit concurrent game structures [10], the transition array
is defined by Boolean expressions. ATS and implicit CGS
do not hide exponential blowup in a parameter of the model
checking problem (m), and hence the complexity of model
checking for these representations is perhaps more meaning-
ful than the results obtained for “standard” CGS. In [10],
Laroussinie et al. claim that model checking ATL+

IR against
ATS as well as implicit CGS is ΔP

3 -complete. Since the
proofs are actually based on the flawed result from [15], both
claims are worth a closer look. We will briefly summarize
both kinds of structures and give correct complexity results
in this section.

Alternating Transition Systems. An ATS is a tuple
M = 〈Agt, St, Π, π, δ〉, where Agt, St, Π, π are like in a CGS,

and δ : St × Agt → 22St

is a function that maps each pair
(state, agent) to a non-empty family of choices with respect
to possible next states. The idea is that, at state q, agent a
chooses a set Qa ∈ δ(q, a) thus forcing the outcome state to
be from Qa. The resulting transition leads to a state which
is in the intersection of all Qa for a ∈ Agt. Since the sys-
tem is required to be deterministic (given the state and the
agents’ decisions), Qa1∩...∩Qak must always be a singleton.

Implicit CGS. An implicit CGS is a concurrent game
structure where, in each state q, the outgoing transitions
are defined by a finite sequence ((ϕ1, q1), ..., (ϕn, qn)). In
the sequence, every qi is a state, and each ϕi is a Boolean
combination of propositions α̂a, where α ∈ d(a, q); α̂a stands
for “agent a chooses action α”. The transition function is
now defined as: o(q, α1, ..., αk) = qi iff i is the lowest index
such that {α̂1

1, ..., α̂k
k} |= ϕi. It is required that ϕn ≡ �, so

that no deadlock can occur. The size of an implicit model
is given by the number of states, agents, and the length of
the sum of the sizes of the Boolean formulae.

Model Checking ATL+ Is PSPACE-Complete Again.
Contrary to in [10, Section 3.4.1], where model checking
ATL+ with respect to both ATS and implicit CGS is
claimed to be ΔP

3 -complete, we establish the complexity as
PSPACE.

Theorem 7. Model checking ATL+ for ATS and im-
plicit CGS using the perfect recall semantics is PSPACE-
complete wrt the size of the model and the length of the for-
mula (even for turn-based models with two agents and “flat”
ATL+ formulae).

Proof sketch. Lower bound. We observe that the num-
ber of transitions in a turn-based CGS is linear in the num-
ber of states (n), agents (k), and actions (d). Moreover, each
turn-based CGS has an isomorphic ATS, and an isomor-
phic implicit CGS; the transformation takes O(nd) steps.
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This, together with the reduction from Section 3.1, gives
us PSPACE-hardness wrt n, k, d and the length of the for-
mula (l) for model checking ATL+ against ATS as well as
implicit CGS.

Upper bound. A close inspection of the algorithm from
Section 3.2 reveals that it can be as well applied to ATS
and implicit CGS.

4. ADDING FAIRNESS TO ATL+

Fairness conditions allow to focus on computations where
no agent is neglected wrt given resources (e.g., access to
power supply, processor time, etc.). Fairness is extremely
important in asynchronous composition of agents. In gen-
eral, it may happen that requests of a group A � Agt are
postponed forever in favor of actions from other agents. In
consequence, if we want to state any positive property about
what A can achieve, we need to refer explicitly to paths
where A’s actions are always eventually executed. To this
end, it is enough to augment ATL+ with the “always even-
tually” combination �� as an additional primitive.

4.1 EATL+

EATL+ is a subset of ATL∗ obtained by extending ATL+

path formulae: γ ::= ¬γ | γ ∧ γ | �ϕ | ϕU ϕ | ��ϕ.
We note that EATL+ is strictly more expressive than

ATL with“weak until” (it follows from the fact that ECTL
is strictly more expressive than CTL [7]), and hence also
more expressive than ATL+. Moreover, in order to rea-
son about the outcome of fair computations in model M ,
it suffices to do the following. First, we add to M special
propositions acti, one per agent i. The propositions indicate
which agent has executed the most recent action. Now, for
example, the EATL+ 〈〈1, 2〉〉((∧i ��acti) → �cleanRoom)
says that agents 1 and 2 can cooperate to make the room
clean for every course of events on which no agent is stalled
forever.

4.2 Model Checking EATL+
IR

In this section we extend the construction from Section 3.2
to obtain an algorithm for EATL+ under the perfect recall
semantics. Firstly, we define the set of witnesses wit∞(λ, γ)
for a flat atomic formula γ ≡ ��ϕ. If λ �|= ��ϕ then
wit∞(λ, γ) = ∅; and if λ |= ��ϕ then wit∞(λ, γ) = {i |
λ[i] |= ϕ}. Note that the set is either infinite or empty.

Moreover, an ATL+-path formula γ is called ��-atomic
if it has the form ��ϕ1. For ϕ ∈ ATL+ we denote the set
of all ��-atomic flat path subformulae of ϕ by APF∞(ϕ).

In the following we generalize the definition of a segment.

Definition 6 (γ-segment, strict). A γ-segment on
a path λ is a tuple (i, j) ∈ N2

0 with i < j such that λ[i] = λ[j]
and for each γ′ ∈ APF∞(γ) with wit∞(λ, γ′) �= ∅ there is a
witness w ∈ wit∞(λ, γ′) such that i ≤ w ≤ j.

We call a γ-segment (i, j) strict if there is no other γ-
segment (k, l) in it.

The next proposition shows that such γ-segments always
exist on paths on which some ��-atomic flat formula is true.
The following proofs are done similarly to the ones given in
Section 3.2 and can be found in [4].

Proposition 8. Let sA be a strategy for (M, q, γ). Then,
for all paths λ ∈ out(q, sA) and t ∈ N there is a strict γ-
segment (i, j) on λ with i ≥ t.
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≤ |St |

q1q
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Figure 6: Proof idea of Theorem 10.

Lemma 9. Let M, q |= 〈〈A〉〉γ. Then, there is a strategy
sA for (M, q, γ) such that any strict γ-segment (i, j) that
contains no more witnesses for any formula from APF(γ)
contains at most |StM | · |APF∞(γ)| states.

In the following we extend the finite path semantics such
that it can deal with ��-atomic flat formulae.

Definition 7 (|=k
for EATL+

). The semantics from
Definition 4 is extended to EATL+-formulae by adding the
following clause: M, λ |=k ��γ iff there is some i < k such
that M, λ[i,∞] |=k γ;

The notion of a k-witness strategy is given analogously to
Definition 5: sA is a k-witness strategy for (M, q, γ) if for
all λ ∈ out(q, sA) we have that M, λ |=k γ.

Theorem 10. We have that M, q |= 〈〈A〉〉γ iff there is a
|StM | · (1 + |APF(γ)| + |APF∞(γ)|)-witness strategy for
(M, q, γ).

Proof sketch. “⇒”: Let sA be a strategy for (M, q, γ).
Then, we modify sA according to Lemma 3 and obtain a
strategy s′A such that on all paths λ of the outcome of s′A
and for all formulae γ′ ∈ APF(γ) with a witness on λ we
have that wit(λ, γ′) ≤ |St| · |APF(γ)| =: t. We modify
s′A to a strategy s′′A according to Proposition 8 and Lemma
9. Finally, the states between t and the start of the strict
γ-segment can be shrunk up to at most |St|-many, again
according to Lemma 3 (cf. Figure 6) resulting in a |StM | ·
(1+ |APF(γ)|+ |APF∞(γ)|)-witness strategy for (M, q, γ).

“⇐”: Now assume there is a k := |StM | · (1 + |APF(γ)|+
|APF∞(γ)|)-witness strategy for (M, q, γ) and no strategy
for (M, q, γ). If this is caused by a formula from APF(γ),
or γ′ from APF∞(γ) with a minimal witness position ≥ k
the reasoning is as in the proof of Theorem 4. We now
consider the case if it is caused by a formula from APF∞(γ)
with a minimal witness position < k. Then, for any k-
strategy sA there must be a γ′ ∈ APF∞(γ) such that for
some path λ1 ∈ out(q, sA) it holds that M, λ1 |=k γ′ but
M, λ2 �|= γ′ where λ2 equals λ1 up to position k. We show
that this cannot be the case. M, λ1 |=k γ′ implies that
γ′ has a witness in the initial γ-segment on λ1 (cf. the
initial γ-segment on λ1 with start and end state q1 in Figure
6). So, there must be a state q and an outgoing path λ2

containing no more γ-segments. However, this state and
outgoing path must also be present in the initial γ-segment
on the path λ1 and on λ3 (see Fig. 6) there must also be
a γ-segment. If it starts within q1 and q on λ3 it must
also be present on λ2. So, suppose the initial γ-segment
on λ3 with start and end state q2 begins before q1. But this
gives us a (non-strict) γ-segment on λ2 (shown by the dotted
line) and of course, this segment can also be reached on the
outgoing path λ2 going through state q on λ1. Applying
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this reasoning recursively proves that each of these paths
contains infinitely many γ-segments. This contradicts the
assumption that M, λ2 �|= γ′.

The previous result allows to construct an alternating Tur-
ing machine with a fixed number of alternations to solve the
model checking problem (cf. the proof of Theorem 5).

Theorem 11. Let ϕ be a flat EATL+ formula, M be
a CGS, and q a state in M . There is a polynomial-time
alternating Turing machine returns “yes” if M, q |= ϕ and
“no“ otherwise.

Finally, we get the following result as a combination of
Theorem 11 and Theorem 2.

Theorem 12. Model checking EATL+ with the perfect
recall semantics over CGS’s is PSPACE-complete wrt the
size of the model and the length of the formula (even for
turn-based models with two agents and flat ATL+ formulae).

5. SIGNIFICANCE OF THE RESULTS
Why are the results presented here significant? First of

all, we have corrected a widely believed“result”about model
checking ATL+, and that is important on its own. Several
other existing claims concerning variants of the model check-
ing problem were based on the ΔP

3 -completeness for ATL+,
and thus needed to be rectified as well. Moreover, the ATL+

verification complexity is important because ATL+ can be
seen as the minimal language discerning strategic abilities
with and without memory of past actions. Our results show
that the more compact models of agents (which we usually
get when perfect memory is assumed) come with a compu-
tational price already in the case of ATL+, and not only for
ATL∗ as it was believed before.

ATL+ deserves attention from the conceptual point of
view, too. We argued in Section 2.3 that it enables neat
and succinct specifications of sophisticated properties re-
garding e.g. the outcome of agents’ play under behavioral
constraints. This is especially clear for EATL+ where the
constraints can take the form of fairness conditions. Con-
straints of this kind are extremely important when specify-
ing agents in an asynchronous environment, cf. [6]. Since
ATL+

IR was believed to have the same model checking com-
plexity as ATL+

Ir, the former seemed a sensible tradeoff be-
tween expressivity and complexity. In this context, our new
complexity results are rather pessimistic and shift the bal-
ance markedly in favor of verification of memoryless agents.
In consequence, for agents with memory one has to fall back
to the less expressive logic ATLIR, or accept the less de-
sirable computational properties of ATL+

IR. On the pos-
itive side, we have also shown that fairness properties in-
cur no extra cost in either case and that model checking
ATL+/EATL+ is still much cheaper than for ATL∗.

6. CONCLUSIONS
In this paper we have corrected a result concerning the

model checking complexity of ATL+ with respect to agents
that remember the whole history of the game. In an oth-
erwise excellent study [15], the problem was “proved” to be
ΔP

3 -complete. Our amendment is rather pessimistic as we
show that the problem is in fact PSPACE-complete. In
consequence, the results on model checking ATL+, reported
in [10], are also incorrect. On the other hand, we also show

that adding fairness conditions does not increase the com-
plexity further, which is definitely good news. In conse-
quence, EATL+

IR is still an interesting option for specifi-
cation and verification of MAS if one wants to avoid the
prohibitive complexity of model checking with full ATL∗

IR.
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